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Abstract

The Inverse Heat Conduction Problem (IHCP) dealing with the estimation of the heat transfer coefficient for a solid/

fluid assembly from the knowledge of inside temperature was accomplished using an artificial neural network (ANN).

Two cases were considered: (a) a cube with constant thermophysical properties and (b) a semi-infinite plate with tem-

perature dependent thermal conductivity resulting in linear and nonlinear problem, respectively. The Direct Heat Con-

duction Problems (DHCP) of transient heat conduction in a cube and in a semi-infinite plate with a convective

boundary condition were solved. The dimensionless temperature-time history at a known location was then correlated

with the corresponding dimensionless heat transfer coefficient/Biot number using appropriate ANN models. Two dif-

ferent models were developed for each case i.e. for a cube and a semi-infinite plate. In the first one, the ANN model was

trained to predict Biot number from the slope of the dimensionless temperature ratio versus Fourier number. In the

second, an ANN model was developed to predict the dimensionless heat transfer coefficient from non-dimensional tem-

perature. In addition, the training data sets were transformed using a trigonometric function to improve the prediction

performance of the ANN model. The developed models may offer significant advantages when dealing with repetitive

estimation of heat transfer coefficient. The proposed approach was tested for transient experiments. A �parameter esti-
mation� approach was used to obtain Biot number from experimental data.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Direct Heat Conduction Problems (DHCP) are con-

cerned with the estimation of the temperature field inside
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solid bodies for known initial and boundary conditions,

thermophysical properties and heat generation rates. On

the other hand, the determination of surface tempera-

tures, heat source rates, and thermophysical properties

by utilizing measured temperatures inside solid bodies

are classified as Inverse Heat Conduction Problems

(IHCP). Such problems are encountered in a multitude

of food and process engineering applications. Examples
ed.
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Nomenclature

A growth constant (�C/s), nonlinear problem
2a side of cube (m)

B dimensionless heat transfer coefficient

(=h
p

ao/(ko
2A)), nonlinear problem

Bi Biot number (h Æa/k)
E cost function

F dimensionless time (=t/tm), nonlinear

problem

Fo Fourier number (at/a2), linear problem
h heat transfer coefficient (W/m2K)

J sensitivity coefficient

k thermal conductivity (W/mK)

N number of measurement

R2 regression coefficient

x, y z linear coordinates (m)

X, Y, Z dimensionless linear coordinates (x/a, y/a,

z/a)

s temperature–time slope, nonlinear problem,

(d//dF)

S temperature–time slope, (dh/dFo)
t time (s)

T temperature (K)

Tf(t) variable ambient/fluid temperature (K),

nonlinear problem

Ti initial temperature (K)

Tf fluid temperature (K)

X nondimensional coordinate (=x/(tm
p

roA),
nonlinear problem

Greek symbols

a thermal diffusivity (m2/s)

r standard deviation

h dimensionless temperature (Tf�T)/(Tf�Ti),

linear problem

/ dimensionless temperature T /(tmA), nonlin-

ear problem
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include sterilization of particulate liquids in continuous

systems (aseptic processing), cooling of fresh produce,

frying and freezing of food and biological materials.

Moreover, the estimation of the heat transfer coefficient

also falls under the category of an Inverse Heat Conduc-

tion Problem (IHCP). This approach requires experi-

mental measurement of the transient temperatures

inside a body of known geometry at a specified location,

usually at the center, and estimation of transient temper-

atures, at the same location, by solving the governing

heat conduction equations with an assumed convec-

tive boundary condition (i.e., the Biot number, Bi). In

doing so, Bi is varied systematically to produce com-

puted temperature-time histories closely matching to

the experimentally measured temperature histories. The

procedure involved is iterative in nature and needs a

long computation time. Although this approach for esti-

mating Bi is more computationally intensive than con-

ventional approaches, it may have an advantage in a

simpler setup and less expensive equipment [1]. Several

algorithms based on finite difference and finite element

methods have been developed for solving the IHCP.

Excellent discussion of the difficulties encountered in

solving the IHCP and several solution methods used

can be found in Beck et al. [2], Beck and Arnold [3],

Alifanov [4] and Ozisik and Orlande [5].

The need for accuracy, fast response and non-itera-

tive solutions to many physical problems has led to the

widespread application of artificial neural networks

(ANN)[6–15]. ANN is a potent computer model that

learns from examples through iterations without requir-
ing prior knowledge of the relationships of the process

parameters. ANN is also capable of dealing with

uncertainties, noisy data, and nonlinear relationships

[14,15]. The salient feature of ANNs that make them

attractive for many different applications is their ability

to learn and generalize the relationship in complex data

sets.

The objective of the present study was to devise a sin-

gle and direct procedure for estimating the heat transfer

coefficient from a numerically/analytically generated

temperature field in a cube and semi-infinite plate using

ANN to avoid the use of a time-consuming, iterative

solution. The problem considered in this work has rele-

vance in food processing operations such as transient

heat transfer analysis during drying, frying and freezing

of small fruit and vegetable cubes, and sterilization of

particulate liquids in continuous systems (aseptic

processing). All of these require knowledge of heat

transfer coefficients.
2. Formulation

2.1. Linear problem

2.1.1. The direct heat conduction problem (DHCP)

Consider the problem of transient heat conduction in

an isotropic cube exposed to a forced flow of a viscous

fluid. The thermophysical properties of the fluid and

solid, as well as the heat transfer coefficient at all faces

of the cube were assumed to be constant. The governing
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tri-dimensional heat conduction equation in non-dimen-

sional form is:

o2h

oX 2
þ o2h

oY 2
þ o2h

oZ2
¼ oh

oFo
ð1Þ

The initial and boundary conditions that are imposed in

Eq. (1) are:

For Fo ¼ 0 h ¼ 1 for all X ; Y and Z ð2aÞ

oh
oX

¼ 0 at X ¼ 0 for all Y and Z; Fo P 0 ð2bÞ

oh
oY

¼ 0 at Y ¼ 0 for all X and Z; Fo P 0 ð2cÞ

oh
oZ

¼ 0 at Z ¼ 0 for all X and Y ; Fo P 0 ð2dÞ

oh
oX

¼ �Bi h at X ¼ 1 for all Y and Z; Fo > 0 ð2eÞ

oh
oY

¼ �Bi h at Y ¼ 1 for all X and Z; Foo > 0

ð2fÞ

oh
oZ

¼ �Bi h at Z ¼ 1 for all X and Y ; Fo > 0 ð2gÞ

where h is the non-dimensional temperature, X, Y, and Z

are the non-dimensional coordinates, Fo is the Fourier

number or dimensionless time and Bi is the Biot number.

The finite element based computer software FIDAP

(Fluent Inc., NH) was used to solve this conduction

problem with a convective boundary condition. A grid

refinement study was made to determine the sensitivity

of the results to the number of grid points. The final re-

sults were generated using a uniform grid with 11 nodal

points in each coordinate direction, since no significant

differences in the center point temperature response were

noted beyond this level. D Fo was selected between 0.002

and 0.05 depending upon the value of Bi. The Biot num-

ber varied from 0.01 to 10. The increment of Bi increased

with increasing Bi. The FIDAP program was run for 65

values of Bi thus obtaining the temperature history at

several locations (X = 0, 0.2, 0.4, 0.6 and 0.8 with Y

and Z = 0). Since the non-dimensional center tempera-

ture varied linearly with Fourier number when plotted

on a semi-log scale, the temperature profile could be

characterized using the slope, S, of this curve. The slope

was obtained from calculated temperature histories at

five locations for the 65 Bi values. Thus 325 cases were

used in the development of the ANN models. The Biot

number and the corresponding slope data set of 325 cases

was divided into two groups. The first group consisted of

245 cases for training/testing of ANN models while the

second group had 80 cases for validation of the ANN

model, chosen randomly from the set of 325 cases.
2.1.2. Analytical solution

Carslaw and Jaeger [16] (pp. 184–186) reported a rig-

orous solution (obtained by separation of variables) to

the boundary value problem Eq. (1–2) for an arbitrary

rectangular parallelepiped. For a specific case of a cube

this solution at the center point yields:

hð0; 0; 0; FoÞ ¼ 8Bi3
X1
n¼1

expð�A2
nFoÞ

ðBi2 þ Biþ A2nÞ cosAn

" #3
ð3Þ

where An are solutions of the equations An tan An = Bi.

Modern computer algebra (Wolfram [17]) allowed us to

reproduce all standard thermal characteristics (in partic-

ular, temperature contour plots in specified parallelepi-

ped cross-sections, flux vector field and volume

averaged temperature). We notice that the roots An of

our nonlinear equation as well as of all equations listed

in Appendix IV of Carslaw and Jaeger [16] are readily

found as FindRoot Mathematica routine. The results ob-

tained by FiDAP are in excellent agreement with those

computed analytically. For instance, the analytical

slopes for Bi = 0.01, 0.1, 1, 10 are S = �0.012985,
�0.12606, �0.96436, �2.6601 whilst ANN gives

�0.01297, �0.12575, �0.95734, �2.61915. We used the

same built-in option ofMathematica to solve the inverse

problem requiring determination of the roots of Bi = f(h,
Fo) from the series equation above. For this case, with

one nonlinear equation involving an infinite number of

other nonlinear equations the solution is not so

straightforward.

Similarly, we can easily handle other geometries,

inhomogeneous boundary conditions (in particular, spa-

tially non-uniform Bi and heat generation terms), if the

variables in Eq. (1) separate or integral Green function

representations are available (e.g., Malov et al [18];

Yen et al. [19]) because Mathematica with minimal pro-

gramming efforts treats nonlinear equations, double-

triple series and integrals. However, the analytical

approach, if one taps all its exactitude (in our case it im-

plied sensitivity to the number of terms retained in the

series and post-audit of the uniqueness of the roots

found), calls for a meticulous analysis and availability

of computer algebra packages that might be not possible

in practical situations.

2.2. Non-linear problem

Consider the problem of transient heat conduction in

a semi-infinite plate exposed to a forced flow of a viscous

fluid. It is assumed that the material is homogeneous but

its thermal conductivity is a function of temperature:

k ¼ koT n ð4Þ

where ko and n are two arbitrary positive constants.

Without any loss of generality (see other finite-support

solutions in Samarskii et al., [20]) we assume that
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n = 1. We also assume that both the solid and ambient

fluid are at zero temperature at t < 0 and at t = 0 the

ambient temperature starts rising as:

T f ¼ At 0 < t < 1 ð5Þ

where A (�C/s) is the growth constant. As above, we as-
sume that at the interface between the body and fluid

(x = 0) the third-type boundary condition holds:

T
dT
dx

¼ h=koðT � T fÞ ð6Þ

We assume that the density q and heat capacity Cp of the

medium are constant. Then the governing equation for

1-D conduction is:

ao
o

ox
T
oT
ox

� �
¼ oT

ot
; ð7Þ

where

0 6 x 6 1; 0 6 t 6 1:

In Eq. (7) ao = ko/(qCp) is the benchmark thermal diffu-

sivity. Although it is constant, the thermal diffusivity it-

self is not owing to variations in conductivity. The

temperature Tm at a certain instant tm and certain point

x inside the body can be estimated. By introducing the

following dimensionless quantities:

/ ¼ T=ðtmAÞ; F ¼ t=tm;X ¼ x=ðtm
ffiffiffiffiffiffiffiffi
aoA

p
Þ;

B ¼ h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ao=ðk2oAÞ

q
ð8Þ

the boundary-value problem Eqs. (5)–(7) can be re-writ-

ten as:

/f ¼ F 0 < F < 1 ð9Þ

/
d/
dx

¼ Bð/ � F Þ at x ¼ 0 ð10Þ

o

oX
/
o/
oX

� �
¼ o/

oF
ð11Þ
2.2.1. Analytical solution

Barenblatt�s [21] traveling wave solution to Eq. (11)

is:

/ ¼ sX þ s2F at X < X 0 ð12Þ

/ ¼ 0 at X > X 0 ð13Þ

where X0(t) = �s*F is a dimensionless depth of the prop-

agation of the heat front into the body. As it is clear

from Eq. (12), to measure temperature at any X one

should wait until the front crosses this point. We recall

that in linear problems the reaction to any change of

the ambient temperature spreads instantaneously over

the whole solid body that is mathematically called an

‘‘infinite speed’’ (celerity).
In order to calculate the constant s we put Eq. (12)

into Eq. (10) and arrive at a cubic equation:

s3 � Bs2 þ B ¼ 0 ð14Þ

Since the Barenblatt solution must have a finite speed of

propagation of the thermal wave from the three roots of

Eq. (14), we need only a real and negative (a positive

root gives a solution of Eq. (7) which does not satisfy

the initial condition). The negative root is found by

the Cardano formula as:

s ¼ B=3� ð1þ I
ffiffiffi
3

p
ÞB2

3�22=3ð2B3 � 27Bþ 3B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81� 12B2

p
Þ1=3

� ð1� I
ffiffiffi
3

p
Þð2B3 � 27Bþ 3B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81� 12B2

p
Þ1=3

6�21=3
ð15Þ

where I is an imaginary unit. We note that instead of the

ambient regime (Eq. (5)) and nonlinearity (Eq. (4)) other

functions leading to explicit solutions from Barenblatt

et al. [21] can be used for matching the third-type bound-

ary condition at x = 0 (of special interest are the blow-up

solutions). Some properties of these solutions (e.g. com-

parison theorems, Samarskii et al., [20]) are intuitively

clear and do not differ qualitatively from the linear con-

duction case. However, the solutions for several other

temperature functions when applied at the boundary

are surprising and not obvious. For example, the case

of rapid temperature rise at the boundary results is local-

ization of temperature front; this is not encountered in

linear heat conduction problems.

2.2.2. Training of the artificial neural network model

The feed forward network structure [22] was used in

this study. The structure of network with transfer func-

tion and computation equation for neurons of different

layers is shown in Fig. 1. Several ANN models were

trained and tested using the training data set. In the case

of a cube, for the inverse problem, the input layer con-

sisted of two neurons corresponding to each of the input

parameter (slope, S, and location, X) while the output

layer had one neuron representing the Biot number,

Bi. In developing the ANN model for the direct prob-

lem, Bi and S were switched. In the case of the semi-infi-

nite plate, the input and output layers consisted of one

neuron in each layer. The number of hidden layers and

the neurons within each hidden layer can be varied

based on the complexity of the problem and the data

set. In order to reduce the chances of memorization of

the behavior within the data set (rather than generaliza-

tion), the number of hidden layers and neurons in these

layers ought to be minimized [13]. In our study, only one

hidden layer was chosen while the neurons in that layer

were varied from 1 to 10, in increments of one. This re-

sulted in a total of 10 networks. The optimal configura-

tion was based upon minimizing the difference between

the ANN predicted values and the desired outputs.



Fig. 1. A schematic diagram of a single neuron, and multi-layer artificial neural network used for the inverse and direct heat

conduction problem.
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The commercial software package, Neural Works

Professional II/Plus (Neural Ware, Pittsburgh, PA),

was employed in the study. The back-propagation algo-

rithm was utilized for model training. In order to train a

model, several parameters including the learning rule,

the transfer function, the learning coefficient ratio, the

random number seed, the error minimization algorithm,

and the number of learning cycles, need to be specified.

These parameters could be varied based on the complex-

ity of the problem. Given the lack of clear guidance in

the literature concerning the selection of the above

parameters, a trial-and-error procedure must be fol-

lowed. While some of the parameters were kept constant

during our study, others were varied to develop the opti-

mum ANN configuration. The parameters that were

kept constant include the transfer function (the hyper-

bolic-tangent transfer function); the learning rule (the

normalized-cumulative delta-rule), the random number
seed (257), and the learning rate (0.9), momentum

(0.6). The error-minimization process was achieved

using the gradient descent rule [22] while the number

of training cycles was set at 200000. All of the remaining

model parameters (as specified above) were kept con-

stant throughout the training processes.

The back-propagation scheme uses the supervised

training technique where the network weights and biases

are initialized randomly at the beginning of the training

phase. For a given set of inputs to the network, the re-

sponse to each neuron in the output layer is calculated

and compared with the corresponding desired output re-

sponse. The errors associated with the desired output re-

sponse are adjusted in such a way that it reduces these

errors in each neuron from the output to the input lay-

ers. To avoid the potential problem of over-training or

memorization while employing the back-propagation

algorithm, the option of saving the best configuration
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was selected in order to only save the network with the

best result during the large number (	200000) of train-
ing cycles.

2.2.3. Selection of the optimal ANN configuration

The performance of various ANN configurations was

compared using the mean relative error (MRE) and the

standard deviations in the relative (STDR) errors. The

coefficient of determination, R2, of the linear regression

line between the predicted values from the neural net-

work model and the desired output was also used as a

measure of performance. The three error measuring

parameters used to compare the performance of the var-

ious ANN configurations were [13,15,23]:

BIAS ¼ 1

N

XN
i¼1

DBR ð16Þ

MRE ¼ 1

N

XN
i¼1

ABSðDBRÞ ð17Þ

STDR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðDBR � DBRÞ2

N � 1

vuuut
ð18Þ

where BR = (BP�BD)/BD. The parameter BP represents

the predicted output from the neural network model

for a given input while BD is the desired output (i.e. ex-

act data) from the same input that was produced by

DHCP.

The coefficient of determination, R2, of the linear

regression line between the predicted values from the

neural network model and the desired output was also

used as a measure of performance.

2.2.4. The iterative ‘‘parameter estimation’’ approach

The transient temperatures at the center of the cube

with known physical and thermal properties were esti-

mated by solving the governing heat conduction Eqs.

(1–2) with an assumed Biot number/convective heat

transfer coefficient using the FIDAP program. The Biot

number/heat transfer coefficient was then varied to pro-

duce several time-temperature profiles and the slopes

were computed from these temperature profiles. The Bi

for transient temperatures obtained from experiment

was then estimated by minimizing the following func-

tion, called the cost function:

E ¼
XN
i¼1

½Sexp � Snum;i�2 ð19Þ

The slope, Sexp was obtained from the experimental

time-temperature data as described in the previous sec-

tion. The transient temperatures at the center of the cube

were obtained for a range of Bi. Using transient temper-

ature data values of Snum,i were computed. The cost
function E was determined using Eq. (19) for various

Bi values and at the minimum value of E, corresponding

Bi was taken as experimental Bi. In this iterative proce-

dure, the Biot number was refined and the stopping cri-

teria used was set as E 6 10�6 at lower range

(1 < Bi < 1.6) and E 6 10�4 at higher range

(5 < Bi < 8) of Biot number. In last equation minimizing

E with respect to parameters Bi leads to:

oE
oBi

¼ 0 )
XM
i¼1

oSnum;i

oBii
ðSexp � Snum;iÞ ð20Þ

Sensitivity coefficient (Ji) was then obtained with re-

spect to Bi

J i ¼
oSnum;i

oBii
ð21Þ
2.2.5. Statistical considerations in parameter estimation

Experimental measurements of temperatures are not

exact. Measurement errors in temperature produce error

in the estimation of slope that may be amplified by the

ill-posed character of the inverse problem. One way to

verify the robustness of the inverse problem algorithm

is to introduce Gaussian noise with an average zero

mean and a constant variance r2 (or standard deviation,
r) to the measured temperature [3,24]. The statistical

properties of the estimated parameters with and without

noise are then correlated. The confidence limits in the

estimated parameters (i.e. Bi) with a confidence interval

at 99% were estimated as ±2.576 · r [3,24].
3. Results and discussion

3.1. Linear problem

Two forms of the training data set were prepared,

namely, (1) Bi as dependent (output parameter), and S

and X as independent (input) variables, in the case of

the inverse problem and, (2) S as dependent and Bi

and X as independent (input) variables, in the case of

the direct problem. In each case, a data set of 245 con-

ditions was used for training the ANN models. Different

ANN configurations were trained using the original as

well as the transformed variables. In each analysis, the

ANN configuration (out of 10) that minimized the four

error measuring parameters and optimized R2 was ulti-

mately selected as the optimum.
3.1.1. The inverse heat conduction problem

In the first attempt, the ANN models were trained

using an original data set without applying any transfor-

mation to the Biot number or to the slope S. The config-

uration of the ANN model was varied, as discussed

above. However, the performance of many ANN config-



Table 1

Associated prediction errors of the Biot number, Bi, for cube/

fluid assembly with different ANN configurations before

transformations of data

# of Neurons

in hidden layer

BIAS (%) MRE (%) STDR (%) R2

1 �127 145 374 0.988

2 �6.16 12.6 33.7 0.999

3 �0.247 16.3 44.5 0.999

4 �5.77 14.4 39.3 0.999

5 �14.3 15.0 41.7 0.999

6 �15.4 15.9 44.5 0.999

7 �6.22 10.0 31.5 0.999

8 �2.63 9.88 23.3 0.999

9 �8.69 11.6 37.0 0.999

10 �42.9 43.1 97.9 0.999
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urations was not very satisfactory (Table 1), since the

MRE and STDR in the prediction of Bi always exceeded

9% and 23, respectively. This was particularly true for

the prediction Bi in the lower range (Bi = 0.01 to 1.0).

An attempt was made to improve the results by chang-

ing some of the neural network parameters such as

transfer functions and learning rate. However, this ap-

proach did not improve the predictive performance of

the ANN models.

In principle, ANN models do not require any prior

knowledge of the relationships between dependent and

independent variables. However, in some problems,

transformation of the independent or/and dependent

variables is known to improve their predictive perform-

ance [9,13]. For examples, friction factor in pipe flow

problems was correlated with Reynolds number on log-
Fig. 2. Relationship between
arithmic scale [13], heat transfer coefficient in tubes was

correlated with thermal, physical and flow properties in

terms of dimensionless numbers such as Nusselt, Reyn-

olds, Prandtl and Eckert numbers [23]. A plot of Bi ver-

sus S indicated that arctangent relationship between Bi

and S as shown in Fig. 2 [25]. Analytical solution of sys-

tem of Eqs. (1–2) also showed tangent relationship be-

tween Bi and one of the parameter in Eq. (3). Hence,

both Bi and S were transformed using the inverse tan-

gent functions tan�1 Bi and tan�1 S before feeding to

the ANN model. This transformation led to a significant

improvement in the prediction performance of all ANN

models (Table 2). The optimal ANN configuration in-

cluded five neurons in the hidden layer. The MRE for

this optimal configuration was 1.8%, with a standard

deviation of 3.3%. Other trigonometric functions such

as exponential transformation were also used but they

did not improve the prediction performance. The predic-

tion error (i.e. relative error) of optimal network in the

higher range of Bi (7.0 < Bi < 10.0) was between 4 and

7%. This is why the standard deviation in relative error

was slightly higher than mean relative error. Fig. 3

shows a plot of the predicted versus desired values of

Bi using the optimal neural network.

Two of the simplest ANN models with three neurons

and four neurons also predicted Bi with very good accu-

racy (MRE < 2.5%). Considering the benefits of a non-

iterative procedure, an ANN model with three hidden

neurons can be considered a very good predictor. This

particular model shows excellent accuracy (MRE of

1.4%) for the prediction of Bi in the range of Bi between

0.04 and 10.0. This model is recommended to users. The

network weights and coefficients associated with this

ANN model are presented in Table 8 Appendix A.
slope and Biot number.



Fig. 4. Relative errors in the prediction of Biot number using

simple ANN configuration with two neurons in the hidden

layer.

Fig. 3. Predicted versus desired values of the Biot number.

Table 2

Associated prediction errors of the Biot number, Bi, for cube/

fluid assembly with different ANN configurations after trans-

formations of data

# of Neurons

in hidden layer

BIAS (%) MRE (%) STDR (%) R2

1 4.09 18.0 29.1 0.971

2 �7.68 18.5 44.2 0.979

3 �1.63 2.51 6.12 0.999

4 �0.181 2.02 4.05 0.998

5 �0.829 1.84 3.32 0.998

6 �1.28 2.21 5.12 0.999

7 �0.458 1.96 4.10 0.999

8 �1.34 2.17 5.13 0.999

9 �0.569 1.99 4.51 0.999

10 1.52 1.98 2.30 0.998
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These equations can be used to predict Bi from the slope

of experimental measured transient temperatures at any

location (0 6 X 6 0.8) within the cube. The associated

relative errors with the prediction of Bi using network

weights and coefficient presented in the Table 8 are

shown in Fig. 4.

3.1.2. The direct heat conduction problem

Determination of the transient temperatures at the

center of the cube for a given Bi does not involve itera-

tive solution. Numerical methods can easily be em-

ployed for this purpose. However, this does involve

writing a computer code or the use of commercial soft-

ware. The data set consisting of Bi and the correspond-

ing S used in the previous section was also used to

correlate them in a direct manner (i.e. Bi and X as inputs

and S as output parameter). The original as well as

transformed (using arctangent function) data sets were

used to train different ANN configurations. The errors

associated with these configurations are summarized in

Tables 3 and 4. Once again, the transformed data im-

proved the predictive performance of ANN model sig-

nificantly. In this case, one of the simplest ANN

model with two hidden neurons was also the optimal

configuration. The MRE for this optimal configuration

was 2.5%, with a standard deviation of 8.2%. The net-

work weights and coefficients associated with this simple

ANN model are presented in Table 9 Appendix A.

These equations can be used to predict S at the center

of cube (hence transient temperatures) for a given Biot

number.
3.1.3. Verification of the ANN models

The predictive performance of both ANN models

(one for inverse and another for direct problem) was val-

idated using a data set of 80 cases, which were not used

in the initial training of the ANN models. In the case of

the inverse problem, the simple ANN model (2 hidden

neurons) predicted Bi with a mean relative error of

2.3%, a standard deviation in relative error of 5.5%,

and a coefficient of determination of 0.9994. For the

direct problem, ANN model with two hidden neurons

predicted S with a mean relative error of 2.2%, a stand-

ard deviation of relative error of 5.6%, and a coefficient



Table 5

Associated prediction errors in the dimensionless heat transfer

coefficient, B, for nonlinear problem with different ANN

configurations after transformations of data

# of Neurons in

hidden layer

BIAS (%) MRE (%) STDR (%) R2

1 1.094 1.96 6.57 1.000

2 1.206 2.34 7.01 1.000

3 0.233 3.32 8.28 0.999

4 �1.047 2.56 5.04 0.999

5 0.197 1.70 4.41 1.000

6 1.459 2.39 4.89 0.999

7 0.576 0.92 2.86 1.000

8 0.748 1.16 3.88 1.000

9 0.630 1.15 3.46 1.000

10 0.357 1.21 4.47 1.000

Table 3

Associated prediction errors of the slope, S, for cube/fluid

assembly with different ANN configurations before transfor-

mations of data

# of Neurons

in hidden layer

BIAS (%) MRE (%) STDR (%) R2

1 �80.1 81.5 213 0.991

2 �8.25 10.8 32.4 0.997

3 �5.34 8.71 25.3 1.000

4 �6.43 9.39 27.8 1.000

5 �8.13 10.4 31.3 1.000

6 �9.63 11.5 34.9 1.000

7 �11.2 12.7 38.4 1.000

8 �2.63 7.35 19.6 1.000

9 �22.1 23.4 72.3 1.000

10 �8.26 11.3 34.2 1.000

Table 4

Associated prediction errors of the slope, S, for cube/fluid

assembly with different ANN configurations after transforma-

tions of data

# of Neurons in

hidden layer

BIAS (%) MRE (%) STDR (%) R2

1 �5.33 14.2 30.5 0.992

2 �1.43 2.52 8.15 1.000

3 �2.74 3.18 10.6 1.000

4 �2.12 2.78 8.90 1.000

5 �0.716 2.03 5.78 1.000

6 �0.895 2.15 6.39 1.000

7 �1.519 2.40 7.46 1.000

8 �1.055 3.46 11.1 1.000

9 �0.235 1.92 5.01 1.000

10 �1.62 2.37 7.71 1.000
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of determination of 1.000. Once again the standard devi-

ations are higher than the mean relative errors since the

errors in predictive performance for Bi less than 0.04

were rather high (	20%). Otherwise, the mean relative

errors in prediction of Bi and S using ANN models were

less than 1% in the Biot number range between 0.04 and

10.0.

3.2. Non-linear problem

ANN models for semi-infinite plate were developed

using the data that were transformed using arctangent

functions. The training data consisted of 100 cases

non-dimensional heat transfer coefficient, B and slope

(of dimensionless temperature / and dimensionless time

F) s, at know location X = 0.2 as variables. A data set of

100 conditions was used for training the ANN models.

The optimal ANN configuration included seven neurons

in the hidden layer. The MRE for this optimal configu-

ration was less than 1.0%, with a standard deviation of

2.9%. The accuracy of simplest model i.e. one or two
neuron(s) in the hidden layer for was also very good

(MRE < 2%, see Table 5). This demonstrated the capa-

bility of neural network to generalize the behavior of the

nonlinear problems. Islam et al. [26] also developed the

neural network with four inputs (i.e. temperature, veloc-

ity and humidity of air, and product thickness) and two

outputs (drying rate parameters) to predict the drying

behavior of potato slices. They solved a highly nonlinear

problem of simultaneous heat and mass diffusion in thin

potato slices with temperature and moisture dependent

thermal conductivity, density and moisture diffusivity

to generate data for training their ANN model using

back-propagation algorithm. The mathematical model

also included temperature dependent thermodynamic

properties of air/water system. The trained network

was then validated using randomly generated test cases

as input. They showed that ANN was able to make

excellent predictions for the multi-dimensional data.

The predictive performance of ANN models (optimal

with seven neurons and the simplest with one neuron in

hidden layer) was validated using a data set of 22 cases,

which were not used in the initial training of the ANN

models. The optimal and the simple ANN model (two

hidden neurons) predicted B with a mean relative error

of 1.0 and 0.6%, respectively. The network weights

and coefficients associated with the simplest ANN

model (i.e. a single neuron) are presented in Table 10

Appendix A.

The non-linear problem presented here is simple since

there is only one input parameter i.e. slope at known

location was used. Of course there are most complex

problems such as time and temperature dependent heat

transfer coefficients could be solved. However there are

not so many analytical solutions available to generate

the data to train ANN models. In such situations

numerical methods alone could be used to generate data.

Nevertheless the ANN based approach developed to

generate non-iterative solutions described here can be

used for more complex problems.
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3.2.1. Example of parameter estimation using

experimental measurements

Nylon cubes (Hoover Precision Products, Sault Ste

Marie, MI) of two different sizes (side = 1.4 and

2.0cm) and known thermal and physical properties were

used for experimental determination of convective heat

transfer coefficients in air freezer and convection oven.

The density, heat capacity, thermal conductivity and

thermal diffusivity of nylon cubes were 1128kg/m3,

2073J/kgK, 0.369W/mK, 1.51 · 10�7m2/s respectively.

For the purpose of measuring particle transient temper-

atures, a fine hole was drilled to the center of the cube,

which was filled with a 50%:50% mixture of epoxy resin

and hardener, and a fine-wire (0.0762mm diameter) cop-

per-constantan thermocouple was inserted to the center.

In this way, the trapping of air along the channel was

minimized. The thermocouple equipped cubes were

heated/cooled in convection oven/freezer maintained at

constant temperature. Temperatures were recorded at

10s time intervals using digital thermometer (Omega

Engineering Corporation, Stamford, CT).

The heat transfer coefficient/Bi values were deter-

mined using the iterative procedure of parameter estima-

tion described in previous section. The estimated values

of heat transfer coefficients for different conditions are

presented in Table 6. The accuracy in estimated and

experimental temperature profiles was good and the
Table 7

Results of an estimation of experimental heat transfer coefficients/B

different standard deviations

Experimental condition

(air temperature and cube size)

Bi using parameter

estimation approach

Standard dev

error in all th

�40�C and 1.4cm 1.07 0.1�C
�40�C and 1.4cm 1.07 0.5�C
�40�C and 1.4cm 1.07 5%

70�C and 2.0cm 7.10 0.1�C
70�C and 2.0cm 7.10 0.5�C
70�C and 2.0cm 7.10 5%

Table 6

Biot number predicted using ANN model and numerical method (FI

System Fluid Side of cube (cm) Iterative me

h (W/m2 K)

Freezer Air, �40�C 1.4 56.4

1.4 57.5

2.0 55.5

2.0 56.3

Convection Oven Air, 70�C 1.4 278

1.4 282

2.0 271

2.0 274
standard deviation in the temperatures for different

experimental condition is given in Table 6. In order to

verify the robustness of inverse parameter estimation ap-

proach three levels of additional noise (r = 0.1 �C, 0.5 �C
and 5% error in all the measured temperatures) to the

transient temperatures was introduced. An example of

the errors in the transient temperatures and its results

in the estimated parameter Bi is presented in Table 7.

The results of the 100 parameter estimation with confi-

dence interval are assembled in Fig. 5a and b. At lower

range of heat transfer coefficient/Bi, there was a relative

error of 1.07%, 1.1% and 1.9% for r = 0.1 �C, 0.5 �C and

5%, respectively. While for higher range of Bi, there was

a relative error of 0.14%, 0.56% and 1.26 for r = 0.1 �C,
0.5 �C and 5%, respectively. The results indicated that

the Bi was less sensitive to introduced errors in transient

temperatures obtained at higher range of Bi. The sensi-

tivity curve also confirms this trend as shown in Fig. 6.

The measured temperatures (or slope) are more sensitive

to lower range of Bi. As expected results are much more

stable for good quality measurements (i.e. r = 0.1 �C and

0.5 �C) than for poor quality measurements (Fig. 5a and
b). These trends are similar for both lower and higher

range of Bi.

The ANN model developed was also used to estimate

convective heat transfer coefficient/Biot number from

transient temperatures within the cube obtained from
iot number obtained with Gaussian noise of zero mean and

iation (r)
e measured temperature

Mean value of

estimated Bi

Standard deviation

(r) in estimated Bi

1.059 0.00263

1.06 0.0125

1.08 0.0415

7.09 0.0424

7.14 0.248

7.19 0.941

DAP) under different experimental conditions

thod Numerical method (FIDAP) ANN Model

Bi Standard deviation r, (�C) h (W/m2 K) Bi

1.07 0.427 56.4 1.07

1.09 0.395 57.5 1.09

1.51 0.511 55.6 1.51

1.53 0.501 56.2 1.53

5.27 0.507 282 5.35

5.35 0.496 285 5.40

7.35 0.241 262 7.10

7.42 0.255 265 7.17



Fig. 5. Biot number estimation results for (a) air temperature �40�C, cube size 1.4cm and (b) air temperature 70�C, cube size 2.0cm.
Results for; (1) r = 0.1�C, (2) r = 0.5 �C and (3) r = 5%.

Fig. 6. Sensitivity in slope (temperatures) with respect to Biot

number.
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experiments. Table 6 shows the values of heat transfer

coefficients/Biot numbers predicted using the ANN

model and the FIDAP for different experimental condi-

tions. For most cases, the Bi predicted was very close to

the Bi estimated using FIDAP (error <4%). The mean

relative error in the ANN-predicted Bi was 1.0%

and the standard deviation of relative error was 1.0%.
This is well below the experimental error (	5–0%)
observed in the estimation of the heat transfer coef-

ficients.

3.2.2. Uncertainty analysis

Artificial neural networks are capable of handling

uncertainties [13–15,22]. In order to test the generaliza-

tion capability of artificial neural networks random

noise was introduced in the training dataset. The analy-

sis is similar to one used in previous section and also

used by Fan et al. [15]. In the case of cube geometry,

the Gaussian distribution with zero mean and a stand-

ard deviation of 5% in slope was introduced in each in-

put data point (i.e. in slope, S). This is the worst-case

error in estimated slope. The analysis was also extended

to incorporate 5% error in thermocouple location (i.e.

X). The error distribution is chosen so that with, 99%

probability, the error in measured temperature or ther-

mocouple location is less than or equal to the worst-case

error. The sensitivity of the optimal network was exam-

ined using the full dataset (245 cases) with the noise. A

set of 200 different files (i.e. 100 with noise in slope

and another 100 with noise in location) with noisy data

based on Gaussian distribution was created (with total

49000 cases). The prediction accuracy of the optimal

network with uncertain data was close to that of original

data set without noise. The results of the 200 data sets

are collected in graphs (Figs. 7 and 8). The prediction

accuracy of neural network with noisy data, at higher

range of Biot number was in the same range (i.e. 10%)

as with observed with original data set. The established

neural network has quite a small uncertainty to random
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errors in Bi less than 8. The Biot number were less sen-

sitive to error in thermocouple location, particularly

when used at the center of the geometry, than error in

measured temperature (i.e. slope). This demonstrated
Fig. 8. Biot number estimation results for Gaussian distribu-

tion with zero mean and a standard deviation of 5% in

thermocouple location.

Fig. 7. Biot number estimation results for Gaussian distribu-

tion with zero mean and a standard deviation of 5% in slope.
the capability of ANN in dealing with uncertainties

and noise.

3.2.3. Sensitivity analysis

The sensitivity of the estimated heat transfer coeffi-

cient with respect to assumed values of thermal conduc-

tivity and thermal diffusivity was tested by introducing

±5% error in these values. A change in thermal diffusiv-

ity alone of a cube by ±5% resulted in a 6.4–7.8% error

in the lower range (i.e. in freezer) of h and in its higher

range (i.e. in oven) by 14.3–20.6%. The associated errors

in calculated h were lower when both thermal diffusivity

and thermal conductivity were changed simultaneously.

A change of ±5% in thermal diffusivity and conductivity

resulted in a 1.8–2.5% and 10–17.4% errors in estimated

h in its lower and higher range, respectively. The errors

in calculated h were higher under conditions of high Bi/

h. This is due to relatively larger internal heat resistance

where heat flow was mainly governed by particle ther-

mal diffusivity rather than convective heat transfer. In

such situations, metal particle with high thermal conduc-

tivity should be chosen over low thermal conductivity

particles, in order to reduce the error in estimation of

h [27]. The thermocouple misplacement error of 0.7

and 1.0mm (10% of the half side of cubes) from the cen-

ter of the particle resulted in overestimation of 0.9–1.5%

in calculated heat transfer coefficient/Bi values at lower

end and at the higher of Bi. A further increase in error

due to thermocouple misplacement of 20% (1.4 and

2.0mm), resulted in an overestimation of the heat trans-

fer coefficient by 4.4 to 7.3%. This suggests that, when

particle temperatures are measured with thermocouples,

the associated error due to thermocouple placement

would be lower if the temperatures are measured at

the particle center, as opposed to away from center. This

is due to associated larger temperature gradients close to

the surface, when compared to the gradient at the parti-

cle center [27].
4. Conclusions

ANN models are presented to allow prediction of the

convective heat transfer coefficient at the surface of a

cube and semi-infinite plate from measurement of the

temperature-time history inside the solid body. These

models are non-iterative, which yield results within

2.5% of those obtained by iterative solution of the gov-

erning conduction equation. A simple ANN model for

estimation of transient temperatures inside the cube

for a range of Bi was also presented. Though analytical

solutions are available to determine temperature in an

arbitrary rectangular parallelepiped as well as in a

semi-infinite plate with temperature dependent thermal

conductivity subjected to convective heat transfer, esti-

mation of the heat transfer coefficient/Bi from known
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time temperature data still remains iterative in nature.

The neural network models were capable in generalizing

the behavior of both linear and nonlinear problems. The

ANN models presented here can easily be used without

any elaborate programming. The present concept of

using neural networks for estimating heat transfer coef-

ficient can easily be extended for complex shapes and

temperature dependent boundary conditions. However,

as the complexity of the problem increases, different

transformation of input/output variables may be

required.
Table 9

Artificial neural network parameters for estimation of S from the loc

i j bias wij

1 1 �1.635 · 100 �1.124 · 100
2 1 �2.82 · 10�4
1 2 8.03 · 10�1 �7.64 · 10�1
2 2 �2.36 · 10�3

X, 0 6 X 6 0.8

Bi, 0.01 6 Bi 6 10.0

S, �2.68 6 S 6 �0.013
Input and output parameters

U1 = atan(Bi)

U2X

S1 = atan (S)

Scaling of input parameters

m1 = 1.369 · 100

c1 = �1.014 · 100
m2 = 2.5 · 100

c2 = 1.0 · 100

Table 8

Artificial neural network parameters for estimation of Bi from the loc

Fo

i j bias wij

1 1 �5.34 · 10�1 �2.3 · 10�2
2 1 6.01 · 10�1

1 2 �1.541 · 100 4.26 · 10�3

2 2 �1.10 · 100
1 3 �2.27 · 10�1 6.42 · 10�2

2 3 3.14 · 10�1

X, 0 6 X < 0.8

Bi, 0.01 6 Bi 6 10.0

S, �2.68 6 S 6 �0.013
Input parameters

U1X

U2 = atan(S)

S1 = atan (Bi)

Scaling of input parameters

m1 = 2.5 · 100

c1 = �1.0 · 100
m2 = 1.665 · 100

c2 = 1.022 · 100
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Appendix A

See Tables 8–10.
ation and Bi

j k bias wjk

1 1 6.16 · 10�1 1.335 · 100

2 1 7.60 · 10�1

De-scaling of output parameter

m1 = 1.001 · 100

c1 = �6.14 · 10�1

ation and slope of temperature ratio (on logarithm scale) versus

j k bias wjk

1 1 4.06 · 10�1 �7.37 · 10�1

2 1 1.04 · 100

3 1 �2.47 · 10�1

De-scaling of output parameter

m1 = 1.218 · 100

c1 = 7.41 · 10�1



Table 10

Artificial neural network parameters for direct estimation of nondimensional heat transfer coefficient, B in nonlinear problem from

slope, s at location X = 0.2

i j bias wij j k bias wjk

1 1 �6.37 · 10�1 �1.029 · 100 1 1 1.31 · 10�1 �8.96 · 10�1
1 2 �3.63 · 10�1 �3.71 · 10�1 �3.61 · 10�1

At X = 0.2

B, 0.01 6 B 6 50.0

s, 0.045 6 s 6 0.981

Input and output parameters

U1 = atan(s)

S1 = atan(B)

Scaling of input parameters De-scaling of output parameter

m1 = 2.738 · 100 m1 = 1.284 · 100

c1 = �1.123 · 100 c1 = 7.804 · 10�1
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